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Introduction to Bayes’ Networks
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Probabilistic Models

• Models describe how (a portion of) the world works

• Models are always simplifications
• May not account for every variable
• May not account for all interactions between variables
• “All models are wrong; but some are useful.”

– George E. P. Box

• What do we do with probabilistic models?
• We (or our agents) need to reason about unknown 

variables, given evidence
• Example: explanation (diagnostic reasoning)
• Example: prediction (causal reasoning)
• Example: value of information
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Independence
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• Two variables are independent if:

• This says that their joint distribution factors into a product two simpler 
distributions

• Another form:

• We write: 

• Independence is a simplifying modeling assumption

• Empirical joint distributions: at best “close” to independent

• What could we assume for {weather, traffic, cavity, toothache}?

Independence
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Example: Independence?

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun 0.3

hot rain 0.2

cold sun 0.3

cold rain 0.2

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4
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Example: Independence

• N fair, independent coin flips:

H 0.5

T 0.5

H 0.5

T 0.5

H 0.5

T 0.5
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Conditional Independence
• P(toothache, cavity, catch)

• If I have a cavity, the probability that the probe catches in it 
doesn't depend on whether I have a toothache:
• P(+catch | +toothache, +cavity) = p(+catch | +cavity)

• The same independence holds if I don’t have a cavity:
• P(+catch | +toothache, -cavity) = p(+catch| -cavity)

• Catch is conditionally independent of Toothache given cavity:
• P(Catch | Toothache, Cavity) = p(Catch | Cavity)

§ Equivalent statements:
§ P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
§ P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
§ One can be derived from the other easily
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Conditional Independence

• Unconditional (absolute) independence very rare (why?)

• Conditional independence is our most basic and robust form of 
knowledge about uncertain environments.

• X is conditionally independent of y given z

If and only if:

Or, equivalently, if and only if
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Conditional Independence

• What about this domain:

• Traffic
• Umbrella
• Raining
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Conditional Independence

• What about this domain:

• Fire
• Smoke
• Alarm
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Conditional Independence and the Chain Rule

• Chain rule: 

• Trivial decomposition:

• With assumption of conditional independence:

• We can represent joint distributions by multiplying these simpler local distributions.
• Bayes’nets / graphical models help us express conditional independence assumptions
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Bayes’Nets: Big Picture
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Bayes’ Nets: Big Picture

• Two problems with using full joint distribution tables 
as our probabilistic models:
• Unless there are only a few variables, the joint is WAY too 

big to represent explicitly
• Hard to learn (estimate) anything empirically about more 

than a few variables at a time

• Bayes’ nets: a technique for describing complex joint 
distributions (models) using simple, local distributions 
(conditional probabilities)
• More properly called graphical models
• We describe how variables locally interact
• Local interactions chain together to give global, indirect 

interactions
• For about 10 min, we’ll be vague about how these 

interactions are specified



18

Example Bayes’ Net: Insurance
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Example Bayes’ Net: Car
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Graphical Model Notation

• Nodes: variables (with domains)
• Can be assigned (observed) or unassigned 

(unobserved)

• Arcs: interactions
• Similar to CSP constraints
• Indicate “direct influence” between variables
• Formally: encode conditional independence 

(more later)

• For now: imagine that arrows mean direct 
causation (in general, they don’t!)
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Example: Coin Flips

• N independent coin flips

• No interactions between variables: absolute independence

X1 X2 Xn
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Example: Traffic

• Variables:

• R: it rains

• T: there is traffic

• Model 1: independence

• Why is an agent using model 2 better?

R

T

R

T

§ Model 2: rain causes traffic
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• Let’s build a causal graphical model!
• Variables
• T: traffic
• R: it rains
• L: low pressure
• D: roof drips
• B: ballgame
• C: cavity

Example: Traffic II
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Example: Alarm Network

• Variables
• B: burglary

• A: alarm goes off

• M: Mary calls

• J: John calls

• E: earthquake!

Burglary Earthquake

Alarm

John Calls Mary Calls
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Bayes’ Net Semantics
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Bayes’ Net Semantics

• A set of nodes, one per variable X

• A directed, acyclic graph

• A conditional distribution for each node

• A collection of distributions over x, one for each 
combination of parents’ values

• CPT: conditional probability table

• Description of a noisy “causal” process

A1

X

An

A Bayes net = Topology (graph) + Local Conditional Probabilities



27

Probabilities in BNs

• Bayes’ nets implicitly encode joint distributions

• As a product of local conditional distributions

• To see what probability a BN gives to a full assignment, multiply all the 
relevant conditionals together:

• Example:
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Probabilities in BNs

• Why are we guaranteed that setting

results in a proper joint distribution?

• Chain rule (valid for all distributions):

• Assume conditional independences:

à Consequence:

• Not every BN can represent every joint distribution
• The topology enforces certain conditional independencies
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30Only distributions whose variables are absolutely independent can be 
represented by a Bayes’ net with no arcs.

Example: Coin Flips

h 0.5

t 0.5

h 0.5

t 0.5

h 0.5

t 0.5

X1 X2 Xn
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Example: Traffic

R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2
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Example: Alarm Network

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99



33

Example: Traffic

• Causal direction

R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16
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Example: Reverse Traffic

• Reverse causality?

T

R

+t 9/16

-t 7/16

+t +r 1/3

-r 2/3

-t +r 1/7

-r 6/7

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16
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Causality?
• When Bayes’ nets reflect the true causal patterns:

• Often simpler (nodes have fewer parents)
• Often easier to think about
• Often easier to elicit from experts

• BNs need not actually be causal
• Sometimes no causal net exists over the domain 

(especially if variables are missing)
• e.g. Consider the variables traffic and drips
• End up with arrows that reflect correlation, not causation

• What do the arrows really mean?
• Topology may happen to encode causal structure
• Topology really encodes conditional independence
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Bayes’ Nets

• So far: how a Bayes’ net encodes a joint 
distribution

• Next: how to answer queries about that 
distribution
• Today: 

• First assembled BNs using an intuitive notion of 
conditional independence as causality

• Then saw that key property is conditional independence
• Main goal: answer queries about conditional 

independence and influence 

• After that: how to answer numerical queries 
(inference)



37

Size of a Bayes’ Net

• How big is a joint distribution over N 
Boolean variables?

2N

• How big is an n-node net if nodes 
have up to k parents?

O(N * 2k+1)

§ Both give you the power to calculate

§ BNs: Huge space savings!

§ Also easier to elicit local CPTs

§ Also faster to answer queries (coming)
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Bayes’ Nets

• Representation

• Conditional independences

• Probabilistic inference

• Learning Bayes’ nets from data
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Bayes Nets: Assumptions

• Assumptions we are required to make to define the Bayes net 
when given the graph:

• Beyond above “chain rule à Bayes net” conditional 
independence assumptions 

• Often additional conditional independences

• They can be read off the graph

• Important for modeling: understand assumptions made when 
choosing a Bayes net graph

P (xi|x1 · · ·xi�1) = P (xi|parents(Xi))
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Example

• Conditional independence assumptions directly from simplifications in 
chain rule:

• Additional implied conditional independence assumptions?

X Y Z W
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Independence in a BN

• Important question about a BN:
• Are two nodes independent given certain evidence?
• If yes, can prove using algebra (tedious in general)
• If no, can prove with a counter example
• Example:

• Question: are X and Z necessarily independent?
• Answer: no.  Example: low pressure causes rain, which causes traffic.
• X can influence Z, Z can influence X (via Y)
• Addendum: they could be independent: how?

X Y Z
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D-separation: Outline
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D-separation: Outline

• Study independence properties for triples

• Analyze complex cases in terms of member triples

• D-separation: a condition / algorithm for answering such queries
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Causal Chains

• This configuration is a “causal chain”

X: Low pressure          Y: Rain                          Z: Traffic

§ Guaranteed X independent of Z ?  No!

§ One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

§ Example:

§ Low pressure causes rain causes traffic,
high pressure causes no rain causes no 
traffic

§ In numbers:

P( +y | +x ) = 1, P( -y | - x ) = 1,
P( +z | +y ) = 1, P( -z | -y ) = 1
P(+x)=P(-x)=0.5
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Causal Chains

• This configuration is a “causal chain” § Guaranteed X independent of Z given Y?

§ Evidence along the chain “blocks” the 
influence

Yes!

X: Low pressure          Y: Rain                          Z: Traffic
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Common Cause

• This configuration is a “common cause” § Guaranteed X independent of Z ?  No!

§ One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

§ Example:

§ Project due causes both forums busy 
and lab full 

§ In numbers:

P( +x | +y ) = 1, P( -x | -y ) = 1,
P( +z | +y ) = 1, P( -z | -y ) = 1
P(+y) = p(-y) = 0.5

Y: Project 
due

X: Forums 
busy Z: Lab full
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Common Cause

• This configuration is a “common cause”
§ Guaranteed X and Z independent given Y?

§ Observing the cause blocks influence 
between effects.

Yes!

Y: Project 
due

X: Forums 
busy Z: Lab full
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Common Effect

• Last configuration: two causes of one 
effect (v-structures)

Z: Traffic

§ Are X and Y independent?

§ Yes: the ballgame and the rain cause traffic, but 
they are not correlated

§ Still need to prove they must be (try it!)

§ Are X and Y independent given Z?

§ No: seeing traffic puts the rain and the ballgame in 
competition as explanation.

§ This is backwards from the other cases

§ Observing an effect activates influence between 
possible causes.

X: Raining Y: Ballgame
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The General Case
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The General Case

• General question: in a given BN, are two variables independent 
(given evidence)?

• Solution: analyze the graph

• Any complex example can be broken 

into repetitions of the three canonical cases
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Reachability

• Recipe: shade evidence nodes, look for 
paths in the resulting graph

• Attempt 1: if two nodes are connected 
by an undirected path not blocked by a 
shaded node, they are conditionally 
independent

• Almost works, but not quite
• Where does it break?
• Answer: the v-structure at T doesn’t count 

as a link in a path unless “active”

R

T

B

D

L
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Active / Inactive Paths
• Question: are X and Y conditionally independent given 

evidence variables {Z}?
• Yes, if x and y “d-separated” by z
• Consider all (undirected) paths from X to Y
• No active paths = independence!

• A path is active if each triple is active:
• Causal chain A ® B ® C where B is unobserved 

(either direction)
• Common cause A ¬ B ® C where B is unobserved
• Common effect (aka v-structure)

A ® B ¬ C where B or one of its descendants is 
observed

• All it takes to block a path is a single inactive segment

Active Triples Inactive Triples
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§ Query:

§ Check all (undirected!) Paths between        and 

§ If one or more active, then independence not guaranteed

§ Otherwise (i.e. If all paths are inactive),

Then independence is guaranteed

D-Separation

Xi �� Xj |{Xk1 , ..., Xkn}

Xi �� Xj |{Xk1 , ..., Xkn}

?

Xi �� Xj |{Xk1 , ..., Xkn}
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Example

Yes R

T

B

T’
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Example

R

T

B

D

L

T’

Yes

Yes

Yes
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Example

• Variables:

• R: raining

• T: traffic

• D: roof drips

• S: I’m sad

• Questions:

T

S

D

R

Yes
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Structure Implications

• Given a Bayes net structure, can run d-
separation algorithm to build a complete 
list of conditional independences that are 
necessarily true of the form

• This list determines the set of probability 
distributions that can be represented 

Xi �� Xj |{Xk1 , ..., Xkn}
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Computing All Independences

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z
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X
Y

Z

{X �� Y,X �� Z, Y �� Z,

X �� Z | Y,X �� Y | Z, Y �� Z | X}

Topology Limits Distributions
• Given some graph topology 

G, only certain joint 
distributions can be encoded.

• The graph structure 
guarantees certain 
(conditional) independences

• (There might be more 
independence)

• Adding arcs increases the set 
of distributions, but has 
several costs

• Full conditioning can encode 
any distribution

X

Y

Z

X

Y

Z

X

Y

Z

{X �� Z | Y }

X

Y

Z X

Y

Z X

Y

Z

X

Y

Z X

Y

Z X

Y

Z

{}
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Bayes Nets Representation Summary

• Bayes nets compactly encode joint distributions

• Guaranteed independencies of distributions can be deduced 
from BN graph structure

• D-separation gives precise conditional independence 
guarantees from graph alone

• A Bayes’net’s joint distribution may have further 
(conditional) independence that is not detectable until you 
inspect its specific distribution
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Bayes’ Nets

• Representation

• Conditional independences

• Probabilistic inference

• Enumeration (exact, exponential complexity)

• Variable elimination (exact, worst-case

Exponential complexity, often better)

• Probabilistic inference is np-complete

• Sampling (approximate)

• Learning Bayes’ nets from data


