Artificial Intelligence CE-417, Group 1 Computer Eng. Department Sharif University of Technology

Fall 2023

By Mohammad Hossein Rohban, Ph.D.

Courtesy: Most slides are adopted from CSE-573 (Washington U.), original slides for the textbook, and CS-188 (UC. Berkeley).

Introduction to Bayes' Networks

• A Reasoning Scenario

I'm at work, neighbor John calls to say that my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

Probabilistic Models

- Models describe how (a portion of) the world works
- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - "All models are wrong; but some are useful."
 George E. P. Box
- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)
 - Example: value of information

- **Diagnostic inference**: from effects to causes Example: Given that JohnCalls, infer P(Burglary|JohnCalls)
- **Causal inference**: from causes to effects Example: Given Burglary, infer P(JohnCalls|Burglary) and P(MaryCalls|Burglary)
- Intercausal inference: between causes of a common effect

Given Alarm, we have P(Burglary|Alarm) = 0.376. But with the evidence that Earthquake is true, then $P(Burglary|Alarm \land Earthquake)$ goes down to 0.003. Even though burglaries and earthquakes are independent, the presence of one makes the other less likely. Also known as **explaining away**.

Independence

• Two variables are *independent* if:

 $\forall x, y : P(x, y) = P(x)P(y)$

- This says that their joint distribution *factors* into a product two simpler distributions
- Another form:

$$\forall x, y : P(x|y) = P(x)$$

+ We write: $X \! \perp \!\!\!\perp Y$

- Independence is a simplifying modeling assumption
 - *Empirical* joint distributions: at best "close" to independent
 - What could we assume for {weather, traffic, cavity, toothache}?

Example: Independence?

P(T)		
Т	Р	
hot	0.5	
cold	0.5	

P_1	(T,	W)
		/

Т	W	Ρ
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$P_{2}(T)$	W
1 2 (1	, •• <i>)</i>

Т	W	Ρ
hot	sun	0.3
hot	rain	0.2
cold	sun	0.3
cold	rain	0.2

P(W)		
W	Р	
sun	0.6	
rain	0.4	

Example: Independence

• N fair, independent coin flips:

• P(toothache, cavity, catch)

- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - P(+catch | +toothache, +cavity) = p(+catch | +cavity)
- The same independence holds if I don't have a cavity:
 - P(+catch | +toothache, -cavity) = p(+catch | -cavity)
- Catch is *conditionally independent* of Toothache given cavity:
 - P(Catch | Toothache, Cavity) = p(Catch | Cavity)
- Equivalent statements:
 - P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
 - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
 - One can be derived from the other easily

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of y given z $X \! \perp \!\!\!\perp Y | Z$

If and only if: $\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$

 $\forall x, y, z : P(x|z, y) = P(x|z)$

11

Or, equivalently, if and only if

- What about this domain:
 - Traffic
 - Umbrella
 - Raining

- What about this domain:
 - Fire
 - Smoke
 - Alarm

- With assumption of conditional independence: P(Traffic, Rain, Umbrella) = P(Rain)P(Traffic|Rain)P(Umbrella|Rain)
- We can represent joint distributions by multiplying these simpler local distributions.
- Bayes' nets / graphical models help us express conditional independence assumptions

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions
 - For about 10 min, we'll be vague about how these interactions are specified

Example Bayes' Net: Insurance

Graphical Model Notation

- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)
- Arcs: interactions
 - Similar to CSP constraints
 - Indicate "direct influence" between variables
 - Formally: encode conditional independence (more later)
- For now: imagine that arrows mean direct causation (in general, they don't!)

Weather

 X_n

• N independent coin flips

21

• No interactions between variables: absolute independence

- - Variables:
 - R: it rains
 - T: there is traffic

- Model 1: independence
- Why is an agent using model 2 better?

Example: Traffic

R

22

Model 2: rain causes traffic

R

Example: Traffic II

- Let's build a causal graphical model!
- Variables
 - T: traffic
 - R: it rains
 - L: low pressure
 - D: roof drips
 - B: ballgame
 - C: cavity

Example: Alarm Network

Variables

- B: burglary
- A: alarm goes off
- M: Mary calls
- J: John calls
- E: earthquake!

Bayes' Net Semantics

- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over x, one for each combination of parents' values
 - $P(X|a_1\ldots a_n)$
 - CPT: conditional probability table
 - Description of a noisy "causal" process

A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

27

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

• Example:

P(+cavity, +catch, -toothache)

=P(-toothache|+cavity)P(+catch|+cavity)P(+cavity)

Probabilities in BNs

28

• Why are we guaranteed that setting $P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$

results in a proper joint distribution?

- Chain rule (valid for all distributions):
- <u>Assume</u> conditional independences:

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | x_1 \dots x_{i-1})$$

$$P(x_i|x_1, \dots, x_{i-1}) = P(x_i|parents(X_i))$$

• Consequence:
$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies

P(h,h,t,h) =

Only distributions whose variables are absolutely independent can be represented by a Bayes' net with no arcs.

Example: Traffic

P(R)			
+	r	1/	4
-	r	3/	4
P(T R)			
	+	t	3/4
	-	t	1/4
	+	t	1/2
	-	t	1/2

Example: Alarm Network

E	P(E)
+e	0.002
-е	0.998

	mat	
17 51		A CONTRACTOR

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
)-b	-е	-a	0.999

Example: Traffic

33

Causal direction

P(T,R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Example: Reverse Traffic

• Reverse causality?

34

P(T,R)

+r	+t	3/16
+r	-t	1/16
-r	+t	6/16
-r	-t	6/16

Causality?

• When Bayes' nets reflect the true causal patterns:

- Often simpler (nodes have fewer parents)
- Often easier to think about
- Often easier to elicit from experts
- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - e.g. Consider the variables *traffic* and *drips*
 - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence

 $P(x_i|x_1, \dots, x_{i-1}) = P(x_i|parents(X_i))$

Bayes' Nets

- So far: how a Bayes' net encodes a joint distribution
- Next: how to answer queries about that distribution
 - Today:
 - First assembled BNs using an intuitive notion of conditional independence as causality
 - Then saw that key property is conditional independence
 - Main goal: answer queries about conditional independence and influence
- After that: how to answer numerical queries (inference)

Size of a Bayes' Net

 How big is a joint distribution over N Boolean variables?

 How big is an n-node net if nodes have up to k parents?
 O(N * 2^{k+1})

2^N

- Both give you the power to calculate
 - $P(X_1, X_2, \ldots X_n)$
- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also faster to answer queries (coming)

Bayes' Nets

Conditional independences

• Probabilistic inference

• Learning Bayes' nets from data

Bayes Nets: Assumptions

 Assumptions we are required to make to define the Bayes net when given the graph:

 $P(x_i|x_1\cdots x_{i-1}) = P(x_i|parents(X_i))$

- Beyond above "chain rule → Bayes net" conditional independence assumptions
 - Often additional conditional independences
 - They can be read off the graph
- Important for modeling: understand assumptions made when choosing a Bayes net graph

 Conditional independence assumptions directly from simplifications in chain rule:

40

Additional implied conditional independence assumptions?

Independence in a BN

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can prove using algebra (tedious in general)
 - If no, can prove with a counter example
 - Example:

- Question: are X and Z necessarily independent?
 - Answer: no. Example: low pressure causes rain, which causes traffic.

- X can influence Z, Z can influence X (via Y)
- Addendum: they *could* be independent: how?

D-separation: Outline

• Study independence properties for triples

• Analyze complex cases in terms of member triples

• D-separation: a condition / algorithm for answering such queries

Causal Chains

•This configuration is a "causal chain"

X: Low pressure

Z: Traffic

P(x, y, z) = P(x)P(y|x)P(z|y)

- Guaranteed X independent of Z ? No!
 - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
 - Example:
 - Low pressure causes rain causes traffic, high pressure causes no rain causes no traffic

44

In numbers:

P(+y | +x) = 1, P(-y | - x) = 1, P(+z | +y) = 1, P(-z | -y) = 1 P(+x)=P(-x)=0.5

Causal Chains

•This configuration is a "causal chain"

X: Low pressure

Z: Traffic

P(x, y, z) = P(x)P(y|x)P(z|y)

Guaranteed X independent of Z given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$
$$= \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$

= P(z|y)

Yes!

Evidence along the chain "blocks" the influence

Common Cause

•This configuration is a "common cause"

P(x, y, z) = P(y)P(x|y)P(z|y)

- Guaranteed X independent of Z ? No!
 - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
 - Example:
 - Project due causes both forums busy and lab full
 - In numbers:

```
P(+x | +y) = 1, P(-x | -y) = 1,
P(+z | +y) = 1, P(-z | -y) = 1
P(+y) = p(-y) = 0.5
```

Common Cause

P

• This configuration is a "common cause"

P(x, y, z) = P(y)P(x|y)P(z|y)

Guaranteed X and Z independent given Y?

$$(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$
$$= \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$$

= P(z|y)

Yes!

 Observing the cause blocks influence between effects.

Common Effect

 Last configuration: two causes of one effect (v-structures)

- Are X and Y independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated
 - Still need to prove they must be (try it!)
- Are X and Y independent given Z?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation.
- This is backwards from the other cases
 - Observing an effect activates influence between possible causes.

The General Case

• General question: in a given BN, are two variables independent (given evidence)?

• Solution: analyze the graph

• Any complex example can be broken

into repetitions of the three canonical cases

Reachability

- Recipe: shade evidence nodes, look for paths in the resulting graph
- Attempt 1: if two nodes are connected by an undirected path not blocked by a shaded node, they are conditionally independent

- Almost works, but not quite
 - Where does it break?
 - Answer: the v-structure at T doesn't count as a link in a path unless "active"

Active / Inactive Paths

Question: are X and Y conditionally independent given evidence variables {Z}?

- Yes, if x and y "d-separated" by z
- Consider all (undirected) paths from X to Y
- No active paths = independence!
- A path is active if each triple is active:
 - Causal chain A → B → C where B is unobserved (either direction)
 - Common cause A \leftarrow B \rightarrow C where B is unobserved
 - Common effect (aka v-structure)

 $A \rightarrow B \leftarrow C$ where B or one of its descendants is observed

• All it takes to block a path is a single inactive segment

- Check all (undirected!) Paths between X_i and X_j
 - If one or more active, then independence not guaranteed

 $X_i \bowtie X_j | \{X_{k_1}, \dots, X_{k_n}\}$

Otherwise (i.e. If all paths are inactive),
 Then independence is guaranteed

$$X_i \perp \perp X_j | \{ X_{k_1}, \dots, X_{k_n} \}$$

$R \bot B \qquad \text{Yes}$ $R \bot B | T$ $R \bot B | T'$

Example

- Variables:
 - R: raining
 - T: traffic
 - D: roof drips
 - S: I'm sad
- Questions:
 - $T \! \perp \! D$
 - $T \bot\!\!\!\perp D | R$ Yes
 - $T \bot\!\!\!\!\perp D | R, S$

0

Structure Implications

• Given a Bayes net structure, can run dseparation algorithm to build a complete list of conditional independences that are necessarily true of the form

$$X_i \perp \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

• This list determines the set of probability distributions that can be represented

Topology Limits Distributions

- Given some graph topology
 G, only certain joint
 distributions can be encoded.
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes' net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution

Bayes' Nets

- Probabilistic inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case

Exponential complexity, often better)

- Probabilistic inference is np-complete
- Sampling (approximate)
- Learning Bayes' nets from data